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Abstract
We calculate the depletion potential between two hard spheres of radii Rs and
that between one hard sphere and a planar hard wall in a sea of hard rigid
spherocylindrical rods of length L and radius Rr . Unlike earlier studies our
approach takes into account the true geometry of the problem and gives, to first
order in the rod density, the exact depletion potential for all values of Rs , L,
and Rr .

1. Introduction

Recently progress was made in understanding colloidal mixtures by mapping the mixture
onto an effective one-component system described by an effective Hamiltonian that is then
tractable for conventional liquid state approaches [1]. In order to make this mapping, the
degrees of freedom of one component, usually that of the smaller colloids, must be integrated
out, resulting in effective particle–particle and where appropriate particle–wall interactions of
the remaining (big) species. If the bare pair interactions in the mixture are solely hard-core
repulsions, the effective interactions are purely entropic in origin and are usually referred to
as depletion interactions.

Depletion potentials were first studied theoretically by Asakura and Oosawa for a simple
model mixture of hard colloidal spheres and non-interacting spherical polymer [2]. They found
that in this system the depletion forces are purely attractive and if enough polymer is present
in the system the potential at contact can be of the order of several kB T . Later [3] they showed
that if long thin rods are used as the depletion agent instead of spherical polymer, strongly
attractive depletion potentials can be found for much lower number densities of the depletant.
Despite these early studies and the potential importance of mixtures of spherical and rod-like
colloids for understanding biological systems, relatively little is known about the depletion
effects in these systems. The depletion potential between two colloidal spheres in a sea of
long and thin rods was studied using the so-called Derjaguin approximation [4, 5], which is
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restricted in its application to the regime of large colloidal spheres in a sea of short needles,
and numerical integration [6] for a mixture of spheres and infinitely thin needles of arbitrary
aspect ratio L/Rs .

In this paper we present a theory for depletion potentials between two spheres or between
one sphere and a planar wall that is exact to first order in ρr , the density of the rods, and that is
valid for arbitrary values of Rs , L, and Rr , where Rs is the radius of the sphere, L and Rr the
length and the radius of the rods, respectively. This theory was recently applied successfully to
interpret the first direct measurement of the wall–sphere depletion potential induced by rigid
rods [7].

2. Theory

A very effective and general approach for calculating depletion potentials within the framework
of density functional theory (DFT) was presented in [8, 9]. In a recent application of this
approach a quantitative prediction of an entropic torque acting on non-spherical object was
made [10]. The approach requires Fex [ρs, ρr ], the intrinsic excess (over ideal gas) Helmholtz
free energy functional for the mixture of spheres and rods. Here ρs(r) and ρr (r, �ω) are the
density profiles of spheres and rods, respectively. Using this functional in the limit of vanishing
sphere density ρs ≡ 0, we first calculate the density profile of rods ρr (r, �ω) in an external
potential Vext (r, �ω), that is either the potential of a planar hard wall or that of one fixed hard
sphere of radius Rs .

In the present work we consider the fluid of rods at low densities, so the exact low-density
excess free energy functional

βFex [{ρi}] = − 1
2

∑
i, j

∫
dq ρi (q)

∫
dq′ ρi (q

′) fi j(q, q′), (1)

with β = 1/kB T , can be employed. In equation (1) the variables q denote either coordinates
of the centres of spheres r or of the centres and orientations of rods (r, �ω). fi j (q, q′) =
exp[−βVi j(q, q′)]−1 is the Mayer f -function of the interaction potential Vi j between particles
of species i and j .

Since long thin rods were found to generate deep depletion potentials at relatively low
number densities [3–6] for which correlation effects are rather unimportant, we will neglect
interactions between rods and set frr ≡ 0 in the following. This assumption simplifies the
calculations dramatically because the density profile of the rods reduces to that of an ideal gas,
i.e.

ρr (r, �ω) ≡ ρr (q) = ρr

4π
exp[−βVext (r, �ω)] = ρr

4π
exp[−βVext (q)], (2)

where ρr is the density of rods in the bulk fluid. If one were to include interactions among
the rods, the density profile would follow from the numerical minimization of the appropriate
density functional [9].

Using the density profile (2) we can calculate the direct one-body correlation function of
spheres in the limit ρs → 0 [11]:

c(1)
s (r) ≡ −δβFex[ρs , ρr ]

δρs(r)
= ρr

4π

∫
dq′ exp[−βVext (q

′)] frs(r, q′), (3)

and finally the depletion potential βW (r) = c(1)
s (∞) − c(1)

s (r) [9]. Since we will focus on the
sphere–wall and sphere–sphere geometries we can simplify the expression for the depletion
potential by performing one angular integration to obtain

βW (r) = −ρr

∫ π/2

0
dθ sin θ

∫
dr′ (exp[−βVext (r

′, θ)] − 1) frs(r, r′, θ). (4)
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Figure 1. The geometry of the overlap (grey shaded) of volumes excluded to the centres of rods
of length L , radius Rr , and orientation θ in the sphere–wall (a) and sphere–sphere (b) geometries.
From (c) it becomes clear that rods of non-zero radius and orientation θ = π/2 in contact with
the wall contribute to the depletion potential, while in the needle limit Rr ≡ 0 this contribution
vanishes.

This formula can be regarded as the generalization to non-spherical depletion agents of
equation (11) in [9]. In the case of hard wall–rod and sphere–rod interactions, the integral in
equation (4) has a purely geometrical meaning and calculates the overlap of volumes excluded
to the centres of rods of a given orientation. For spherocylindrical rods of length L, radius Rr ,
and orientation θ , the geometry of the overlap of the excluded volumes is shown in figure 1. In
the case of the wall–sphere geometry the overlap (grey-shaded area) of the depletion layer at
the wall, that is formed because the centres of rods cannot approach the planar hard wall located
at z = 0 closer than zmin = Rr + L| cos(θ)|/2 (dashed–dotted curve), and around the hard
sphere, a spherocylinder of length L and radius Rr + Rs (solid curve)—see figure 1(a)—must
be calculated. For the sphere–sphere geometry the overlap of two parallel spherocylinders
(grey-shaded area), both of length L and radius Rr + Rs—see figure 1(b)—must be calculated.
In order to obtain the depletion potential, the overlaps of excluded volumes for all orientations
θ must be added. Both integrations in (4) are computed numerically.

It is important to realize that since the present approach is exact to first order in the
density of the rods for all values of Rs , L, and Rr , in the limit L → 0 and Rr > 0 the well-
known Asakura–Oosawa [2] result for the mixture of colloids and ideal (spherical) polymer
is recovered by (4). Furthermore, the present approach reproduces the exact results for the
sphere–sphere depletion potential in the limit of infinitely thin needles Rr/L → 0, but with
arbitrary L/Rs , presented in [6].

3. Results

In figure 2(a) we present a comparison of the calculated depletion potential (curves) between a
planar hard wall and a colloidal sphere with radius Rs = 1.85 µm immersed in sea of rods of
length L = 203 nm and radius Rr = 9 nm and direct measurements (symbols) made using total
internal reflection microscopy (TIRM) [7] for two different rod densities. The experimental
system was prepared such that interactions were suppressed apart from the hard-core repulsion.
The measured depletion potentials are in excellent agreement with those predicted using the
present theory for the model system consisting of hard rods and a single hard sphere close to a
planar hard wall. Only at very small distances from the wall are there small deviations of the
measured depletion potentials from the theoretical ones, reflecting a small degree of softness
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Figure 2. (a) Comparison between experiment (symbols) [7] and theory (curves) for the depletion
potential between a planar wall and a colloidal sphere of radius 1.85 µm in a sea of rods of length
L = 203 nm and radius Rr = 9 nm for rod densities of ρr ≈ 10 and 50 µm−3. For clarity, the
curve for the second density is shifted by −1. (b) We show for the same values of Rs , L , and Rr

and ρr = 52 µm−3 the depletion potential between a sphere and a hard wall (full curve). This is
about double the potential between two spheres (dotted curve).

of the wall. Details of the experiment and a more detailed comparison between theory and
experiment can be found in [7].

In figure 2(b) we compare for the same system as in (a) at the higher rod density
ρr = 52 µm−3 the wall–sphere (full curve) and the sphere–sphere (dotted curve) depletion
potentials. It is interesting to note that for these values of Rs , L, and Rr the wall–sphere
potential is to a very good approximation twice the sphere–sphere potential. As already noted
in [6], the Derjaguin approximation (dashed and dashed–dotted curves) employed in [4, 5]
provides a good account of the exact depletion potentials in the regime Rr � L � Rs . In the
Derjaguin approximation the wall–sphere potential (dashed–dotted curve) is simply twice the
sphere–sphere (dashed curve) potential.

Although the scaling demonstrated in figure 2(b) is valid for the Asakura–Oosawa model
of a model colloid–polymer mixture at large size asymmetries [2], it is not generic for the
mixture of spheres and rods. Rather, it is specific to the choice of parameters Rr � L � Rs .
In this range the geometry of the excluded volumes is similar to that of the Asakura–Oosawa
model and hence the scaling is to be expected. If, however, the length of the rods becomes
large compared to the radius of the spheres L � Rs , the difference between the sphere–wall
and sphere–sphere geometries becomes more pronounced—see figure 1.

As an example of this effect we compare in figure 3 the wall–sphere and sphere–sphere
depletion potentials at a fixed number density ρr R3

s = 1 of needles (Rr = 0) for various aspect
ratios L/Rs . As the aspect ratio L/Rs becomes larger the shape of the sphere–sphere potential
changes significantly: the overlap of two long thin parallel spherocylinders (see figure 1(b)) is
large only if the spheres are close together. For larger separations only rods with orientations
θ ≈ 0 contribute to the depletion potential.

Moreover, we find that there is no longer a simple scaling between the wall–sphere and
the sphere–sphere depletion potentials. The contact values in those two cases differs by more
than a factor of three for L/Rs = 2 and by more than a factor of 4.5 for L/Rs = 6, the largest
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Figure 3. Comparison between the wall–sphere (a) and the sphere–sphere (b) depletion potentials
in a sea of needles (Rr = 0) at a constant number density of needles ρr R3

s = 1 for various aspect
ratios L/Rs . In (a) and (b) the same curves correspond to the same parameters.

aspect ratio used in figure 3. In the inset of figure 3(b) a comparison of the sphere–sphere
depletion potential for L/Rs = 2 between the present theory (full curve) and the Derjaguin
approximation employed in [4, 5] (dashed–dotted curve) is shown. The large deviation between
results demonstrates clearly the breakdown of the Derjaguin approximation outside the regime
Rr � L � Rs .

Within the framework of effective Hamiltonians for colloidal mixtures [1], the sphere–
sphere depletion potentials shown in figure 3 can enable us to understand the fluid–fluid
phase separation into a sphere-rich fluid and a sphere-poor fluid phase that was found by
simulations [12], by DFT [13, 14], and by the free volume theory [12, 13, 15], and the fluid–
solid phase separation and the wall crystallization found experimentally [16, 17].

In the case of long thin rods, an approximation that retains only the sphere–sphere depletion
potential, i.e. the effective pair interaction, is expected to be sufficient to give an accurate
description of the bulk phase behaviour. Many-body effective interaction potentials should be
small compared to the pair potential and hence should not significantly influence the phase
boundaries calculated from the effective pair potential alone.

Since the sphere–sphere potentials shown in figure 3(b) are much less attractive than the
wall–sphere potentials, shown in 3(a), the adsorption of spheres at a planar hard wall at a state
point in the sphere-poor phase lying close to phase separation should be very large indeed and
should lead to complete wetting by the sphere-rich phase.

In summary, we have presented results of calculations of depletion potentials in a colloidal
mixture of spheres and rods that are exact to first order in the rod density. These potentials
can be input into an effective Hamiltonian in order to study the thermodynamic behaviour and
correlation functions of the spheres in a mixture for both homogeneous and inhomogeneous
situations. This procedure provides an alternative to the DFT (full mixture) route described
in [13, 14].
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[8] Götzelmann B, Roth R, Dietrich S, Dijkstra M and Evans R 1999 Europhys. Lett. 47 398
[9] Roth R, Evans R and Dietrich S 2000 Phys. Rev. E 62 5360

[10] Roth R, van Roij R, Mecke K R, Andrienko D and Dietrich S 2002 Phys. Rev. Lett. 89 088301
[11] Evans R 1979 Adv. Phys. 28 143
[12] Bolhuis P and Frenkel D 1994 J. Chem. Phys. 101 9869
[13] Schmidt M 2001 Phys. Rev. B 63 050201
[14] Brader J M, Esztermann and Schmidt M 2002 Phys. Rev. E 66 031401
[15] Vliegenthart G A and Lekkerkerker H N W 1999 J. Chem. Phys. 111 4153
[16] Vliegenthart G A, van Blaaderen A and Lekkerkerker H N W 1999 Faraday Discuss. 112 173
[17] Koenderink G H, Vliegenthart G A, Kluijtmans S G J M, van Blaaderen A, Philipse A P and

Lekkerkerker H N W 1999 Langmuir 15 4693


